
Introduction To
Scientific Computing

Basics of MATLAB

Dr. Fintan Healy

Room 1.31, Queens Building

fintan.healy@bristol.ac.uk

Lecture 2

Syntax Basics

Lecture Aims

Familiarise you with basic MATLAB Syntax

(Re-)Introduce you to core programming constructs

Overview of basic plotting functionality

MATLAB

▪ By now, you should feel
relatively “comfortable” with
MATLAB

▪ During your studies, you have
learnt basic programming
concepts through the lens of
the Python language

– but all these concepts translate
to MATLAB!

▪ Remember which language
you used depends on the
task:

Capability MATLAB Python C++

Scientific Programming Good Good Good

Data Science Good Good Poor

Dashboards Poor Excellent Poor

Plotting Good Good- Poor

Real-time Control-systems Excellent Poor Good

Experiments Good Okay Poor

Documentation Excellent Good- Okay

Debugging Excellent Good* Okay

3rd party Integration Poor Good Okay

Deep learning Okay Excellent Good

Execution time Okay Okay Excellent

Community Contributions Okay Excellent Good

Opinions based on programming requirements for

“general engineering” in industry

Basic Types

Data Types

Numeric Types Logical Types

% Numeric Types
a = 1;
b = 1.3;
c = sqrt(pi);
d = 4.5e-3;
e = 8.6e26;

% Type casting
f = single(b);
g = int64(d);

% Complex numbers
h = 1 + 2i;
i = complex(1, 2);

% Logical Type
a = true;
b = false;

% Logical Operators
c = a & b; % Logical AND
d = a | b; % Logical OR
e = ~a; % Logical NOT
f = xor(a, b); % Logical XOR

Data Types

Numeric Arrays Logical Arrays

a = [1,2,3];
b = [1+2i, 3+4i, 5+6i];
c = [0,0,1i];

a = [true,false,false];
b = [true,0,5];

▪ You can create an array of values using square brackets “[]”, with
values separated by a comma (,) or a space ()

▪ You can create arrays of different types, e.g.:
– Numbers

– Complex numbers

– Logicals

Data Types

Character Arrays Strings

a = 'test';
b = ['t','e','s','t’];
a == b; % returns true

c = ['The Answer is ', num2str(42)];
d = 'The Answer is 42’;

a = "test";
b = ["t", "e", "s", "t"];
a == b; % returns false

c = ["Mon", "Tue", "Wed", "Thu", "Fri"];

▪ There are two ways to store text in MATLAB
– A Character Array – use single quotes ‘ ’

– A String – using double quotes “”

▪ They behave very differently!
– A character array is “an array of single characters” and acts as an array!

– A String acts as one object, so you can have an array of strings.

Matrix Algebra

Vector and Matrix Definitions

▪ To define a row vector, we separate entities with spaces or commas

▪ To define a column vector, we separate entries by semicolons
(which means start a new row):

▪ A matrix is then several rows separated by semicolons:

MATLAB

a = [3 1 8]

a = [3,1,8]

MATLAB

a = [7.3;2.1]

MATLAB

a = [7 1 8;2 0 5]

a = [7,1 8; 2 0,5;]

7 1 8

2 0 5

7.3

2.1

3 1 8

Array Constructors
▪ Linearly spaced numbers

“an array of N numbers, evenly spaced
between a and b”

▪ Repeated pattern

“repeat matrix ‘x’ , ‘m’ times in a row-wise
direction and , ‘n’ times in a column-wise
direction”

▪ Array of zeros

▪ Array of ones

▪ Identity Matrix

a = zeros(1,3);
0 0 0

a = ones(2);
b = ones(2,2);

1 1

1 1

a = eye(3);

1 0 0

0 1 0

0 0 1

a = 0;
b = 1;
N = 5;
c = linspace(a, b, N);

0 0.25 0.5 0.75 1

m = 3;
n = 1;
x = [1,2,3];
c = repmat(x, m, n);

1 2 3

1 2 3

1 2 3

Array Concatenation

▪ We can also concatenate (combine) matrices and vectors together.
– However, dimensions must agree.

MATLAB

a = [1 2];

b = [4 5];

c = [7;8];

1 2

4 5

7

8

MATLAB

d = [a;b];

e = [d c];

f = [e e;a b a];

1 2

4 5

1 2

4 5

7

8

1 2

4 5

7

8

1 2

4 5

7

8

1 2 4 5 1 2

Vector Construction (the ‘:’ Operator)

▪ The colon operator can create ranges of values with fixed spacing

▪ The default stepsize is 1. But you can also specify the stepsize by
using two colons

a = 1:5;
% equivalent to
a = [1,2,3,4,5];

start = 1;
stop = 7;
step = 2;
x = start:step:stop;
% equivalent to
x = [1,3,5,7];

x = 5:-2:0;
% equivalent to
x = [5,3,1];

Start at ‘a’, take steps of

‘b’. Stop when values are

not between ‘a’ and ‘c’

Array Indexing

▪ You can access elements of
an array using parentheses

▪ The keyword ‘end’ can be
used to access the last item

5 6 7 8 9

3

7

5

6

a(3) % returns 7
a(end) % returns 9
a(end-1) % returns 8

a(1) % returns 3
a(3) % returns 5

▪ You can access elements of a
matrix using two parameters

▪ You can alter elemental values
of a matrix in a similar way

7 1 8

3 5 1

2 0 5

a(1,2) % returns 1
a(3,3) % returns 5

row column

9 5 1

3 6 9

a(1,1) = 0;
a(2,2) = 0;

0 5 1

3 0 9

Array Indexing

▪ You can also access slices of
an array, by passing arrays into
the parameters

7 1 8

3 5 1

2 0 5

a(2,[1,2,3])

a([1,3],1)

3 5 1

7

2

▪ When taking slices, the colon
operator and ‘end’ keyword
become very powerful!

▪ A lone colon “:” can also be
used to access an entire row or
column.

3 1 4 8

3 4 9 1

2 0 0 5

a([1,2,3],[1,2])

a(1:3,1:2)

a(1:end,1:end-2)

3 1

3 4

2 0

3 1 4 8

3 4 9 1

2 0 0 5

a(2,:)

a(end,:)

3 4 9 1

2 0 0 5

Array Indexing

▪ Logical arrays can also be passed to arrays as an indexing
parameter

5 6 7 8 9 a = [5 6 7 8 9];
b = a>6; % b = [false false true true true]

% the next three lines do the same thing
a(a>6) = nan;
a(b) = nan;
a([false, false, true, true, true]) = nan;5 6 nan nan nan

Matrix Manipulation

▪ MATLAB has a number of built-in functions to perform basic and
complicated matrix manipulation.

Operation Equation MATLAB

Matrix multiplication 𝑪 = 𝑨𝑩 C=A*B;

Transpose 𝑪 = 𝑨𝑇 C=A’;

Inverse 𝑪 = 𝑨−1 C=inv(A);

Determinant 𝑪 = det(𝑨) C=det(A);

Pseudo-inverse 𝑪 = 𝑨+ C=pinv(A);

Note

To do matrix multiplication, the number of columns of A must equal the number of rows of B.

Element-wise Matrix Manipulation

▪ We can also perform operations on elements of matrices (note, matrices must
be the same size in all dimensions for this to work).

▪ We can add (or subtract) together each element of two matrices:

▪ We can also multiple (or divide) each element of two matrices using .* and ./:

MATLAB

C = A + B;

𝑎1 𝑎2
𝑎3 𝑎4

+
𝑏1 𝑏2
𝑏3 𝑏4

=
𝑎1 + 𝑏1 𝑎2 + 𝑏2
𝑎3 + 𝑏3 𝑎4 + 𝑏4

𝑎1 𝑎2
𝑎3 𝑎4

⨀
𝑏1 𝑏2
𝑏3 𝑏4

=
𝑎1𝑏1 𝑎2𝑏2
𝑎3𝑏3 𝑎4𝑏4

Note

This is called the Hadamard Product; it is not the same as matrix multiplication!

MATLAB

C = A .* B;

Some More Examples

-1 4 7 2 5 sum(a(a<=4))

Some More Examples

-1 4 7 2 5 sum(a(a<=4)) 5

7 6 8 5 9 a(2:end)-a(1:end-1)

sum([-1 4 2])

Some More Examples

-1 4 7 2 5 sum(a(a<=4)) 5

3 1 4 8

3 4 1 1

2 0 0 5

a(:,1)'*a(:,end-1)

7 6 8 5 9 a(2:end)-a(1:end-1) -1 2 -3 4

sum([-1 4 2])

Some More Examples

-1 4 7 2 5 sum(a(a<=4)) 5

3 1 4 8

3 4 1 1

2 0 0 5

a(:,1)'*a(:,end-1) 3 3 2

4

1

0

15

7 6 8 5 9 a(2:end)-a(1:end-1) -1 2 -3 4

sum([-1 4 2])

Core Coding Constructs

Control Flow - IF

▪ In MATLAB, we can use conditional statements (if, else if, else) to branch off during the
execution of our code.

▪ Unlike Python, the keyword ‘end’ is used to determine the end of the statement.

Note

Indenting is only aesthetic (unlike Python, where it forms part of the syntax)

MATLAB

if <expression>
 <statements>
elseif <expression>
 <statements>
else
 <statements>
end

MATLAB

if aileronIN > 30.0
 aileronOUT = 30.0;
elseif aileronIN < -30.0
 aileronOUT = -30.0;
else
 aileronOUT = aileronIN;
end

Control Flow - IF
▪ The full if-elseif-else statement can be simplified

down to if, if-else or if-elseif as appropriate.

▪ Common boolean operators are similar to those
found in Python:

Expression True if

a < b a is strictly less than b

a > b a is strictly greater than b

a <= b a is less than or equal to b

a >= b a is greater than or equal to b

a == b a is equal to b

a ~= b a is not equal to b

a & b both a and b are true

a | b either a or b is true

MATLAB

if aileronIN > 30.0
 aileronOUT = 30.0;
end

Control Flow – Switch
▪ A similar flow can be achieved with a switch-case statement

▪ A switch-case block selects and executes code based on the value of a
variable, running the “code block” for the first matching case.

Note

The function ‘disp’ prints to the command line.

MATLAB

mode = 1;
switch a
 case 1
 disp('Enabled')
 case 0
 disp('Disabled')
 case 2
 disp('Paused')
 otherwise
 disp('Unknown Mode')
end

MATLAB

Day = "mon";

switch Day

 case {"Mon", "Tue", "Wed", "Thu"}

 disp("Weekday")

 case "Friday"

 disp("End of the work week")

 case {"Sat", "Sun"}

 disp("Weekend")

 otherwise

 disp("Unknown Day")

end

What will this

script display?

Control Flow - FOR

▪ A for loop repeats a block of code a specific number of times. It’s
used when you know how many times you want to loop.

MATLAB

for <variable> = <array>
 <code>
end

“Assign each value from the

array to the variable and

execute the code block”

MATLAB

A = zeros(1,5);
for i = [1,3,5]
 A(i) = i^2;

end

for i = 1:length(A)
 A(i) = A(i) + i^2;

end

MATLAB

A = zeros(4,3);
for i = 1:size(A,1)
 for j = 1:size(A,2)
 A(i,j) = i*j;
 end
end

Note

‘length(A)’ returns the length of the longest dimension in A

‘size(A,n)’ returns the size of the N’th dimension of A (rows=dim 1,columns=dim 2)

Control Flow - FOR

▪ Two special keywords can alter the flow of for loops:
– “continue”: stop execution of code block and go to next iteration

– “break”: exit the loop

MATLAB

for i = 1:10
 if i==4 | i==1
 continue; % skip rest of code block
 elseif i==7
 break; % exit for loop
 end
 disp(i)
end

Control Flow - FOR

▪ Two special keywords can alter the flow of for loops:
– “continue”: stop execution of code block and go to next iteration

– “break”: exit the loop

MATLAB

for i = 1:10
 if i==4 | i==1
 continue; % skip rest of code block
 elseif i==7
 break; % exit for loop
 end
 disp(i)
end

2

3

5

6

Control Flow - WHILE

▪ A while loop keeps running as long as a condition is true. It’s used when you
don’t know in advance how many times you’ll need to loop.

▪ ‘continue’ and ‘break’ can also be used in a while loop

MATLAB

i = 1;
res = [];
while i < 60
 i = i*3;
 if mod(i,2) == 0 % skip even numbers
 continue;
 end
 res(end+1) = i;
end
disp(res);

Note

‘mod(x,n)’ computes the modulus,

which is the remainder when x is

divided by n

Control Flow - WHILE

▪ A while loop keeps running as long as a condition is true. It’s used when you
don’t know in advance how many times you’ll need to loop.

▪ ‘continue’ and ‘break’ can also be used in a while loop

MATLAB

i = 1;
res = [];
while i < 60
 i = i*3;
 if mod(i,2) == 0 % skip even numbers
 continue;
 end
 res(end+1) = i;
end
disp(res);

3 9 27 81

Note

‘mod(x,n)’ computes the modulus,

which is the remainder when x is

divided by n

Plotting – Quick Intro

Plotting A Single Line

▪ MATLAB has a powerful built-in
plotting facility.

– ‘help’ and ‘doc’ commands are
helpful here. The array of options &
parameters available is vast!

▪ We’ll quickly cover the basics in
these slides.

▪ MATLAB allows for 2D plots of one
vector against another

– ‘figure’ command creates a new
figure window

MATLAB

figure;
t = 0:0.1:1;
y = t.^2;
plot(t,y);

Note

The vectors must have the same length!

Plotting Multiple Lines

▪ By default, multiple calls to ‘plot’
will overwrite the previous line

▪ Use the command ‘hold on’ to
allow multiple lines on the same
graph

MATLAB

figure;
hold on;
t = 0:0.1:1;
y = t.^2;
plot(t,y);

y2 = sin(2*pi*t);
plot(t,y2);

Note

The syntax ‘hold on’ may seem strange. This is a piece

of syntactic sugar. A space passes the next word as a

character array to the function. e.g.

hold on;
hold('on’);

Are equivalent

Plotting Multiple Lines

▪ We can also change various aspects of
the plot area and the line styles.

▪ To change the line style, add a string of
characters to the plot command

– See ‘doc plot’ for full details

▪ Other common commands:

MATLAB

y = t.^2;
plot(t,y,'go-’);
%green line with circle markers

y2 = sin(2*pi*t);
plot(t,y2,'r--’);
%red dashed line

y3 = exp(t);
plot(t,y3,'bx:’);
%blue dotted line with x markers

Command Action

axis([XMIN XMAX YMIN YMAX]) Scale axes

title(`text') Add the title ‘text’ to the graph

xlabel('text') Add the label ‘text’ to the x axis

legend(`line1',`line2') Add a legend for each of the lines

grid Toggle grid lines on and o

close all Close all opened figure windows

clf Clf plots on current figure

SUMMARY

Summary

▪ Have introduced MATLAB syntax

▪ Have re-introduced coding constructs

▪ Have covered the basics of plotting

This Week

• Attempt as many of the worksheets as possible

• Second (and final) Lab next Tuesday

• Note – more tasks than you can complete in four hours - provided for practice

https://i2sc.fintanhealy.co.uk/

https://i2sc.fintanhealy.co.uk/

	Slide 1: Introduction To Scientific Computing
	Slide 2: Lecture 2
	Slide 3: Lecture Aims
	Slide 4: MATLAB
	Slide 5: Basic Types
	Slide 6: Data Types
	Slide 7: Data Types
	Slide 8: Data Types
	Slide 9: Matrix Algebra
	Slide 10: Vector and Matrix Definitions
	Slide 11: Array Constructors
	Slide 12: Array Concatenation
	Slide 13: Vector Construction (the ‘:’ Operator)
	Slide 14: Array Indexing
	Slide 15: Array Indexing
	Slide 16: Array Indexing
	Slide 17: Matrix Manipulation
	Slide 18: Element-wise Matrix Manipulation
	Slide 19: Some More Examples
	Slide 20: Some More Examples
	Slide 21: Some More Examples
	Slide 22: Some More Examples
	Slide 23: Core Coding Constructs
	Slide 24: Control Flow - IF
	Slide 25: Control Flow - IF
	Slide 26: Control Flow – Switch
	Slide 27: Control Flow - FOR
	Slide 28: Control Flow - FOR
	Slide 29: Control Flow - FOR
	Slide 30: Control Flow - WHILE
	Slide 31: Control Flow - WHILE
	Slide 32: Plotting – Quick Intro
	Slide 33: Plotting A Single Line
	Slide 34: Plotting Multiple Lines
	Slide 35: Plotting Multiple Lines
	Slide 36: Summary
	Slide 37: Summary

