= [University of
U BRISTOL

Introduction To
Scientific Computing
Basics of MATLAB

Dr. Fintan Healy

Room 1.31, Queens Building
fintan.healy@pbristol.ac.uk

bristol.ac.uk

Vé University of
W BRISTOL

Lecture 2
Syntax Basics

Lecture Aims

Familiarise you with basic MATLAB Syntax

(Re-)Introduce you to core programming constructs

Overview of basic plotting functionality

bristol.ac.uk

MATLAB

= By now, you should feel
relatively “comfortable” with
MATLAB

= During your studies, you have
learnt basic programming
concepts through the lens of
the Python language

— but all these concepts translate
to MATLAB!

= Remember which language
you used depends on the
task:

bristol.ac.uk

MATLAB 4\
SIMULINK'

Scientific Programming Good Good Good
Data Science Good Good Poor
Dashboards Poor Excellent Poor
Plotting Good Good- Poor
Real-time Control-systems Excellent Poor Good
Experiments Good Okay Poor
Documentation Excellent Good- Okay
Debugging Excellent Good* Okay
31 party Integration Poor Good Okay
Deep learning Okay Excellent Good
Execution time Okay Okay Excellent
Community Contributions Okay Excellent Good

Opinions based on programming requirements for
“general engineering” in industry

= [University of
U BRISTOL

Basic Types

bristol.ac.uk

Data Types
Numeric Types Logical Types

% Numeric Types % Logical Type

a =1; a = true;

b =1.3; b = false;

c = sqrt(pi);

d = 4.5e-3; % Logical Operators

e = 8.6e26; c =a &b; % Logical AND
d =a | b; % Logical OR

% Type casting e = ~a; % Logical NOT

f = single(b); f = xor(a, b); % Logical XOR

g = int64(d);

% Complex numbers

h =1+ 2i;

i = complex(1l, 2);

bristol.ac.uk

Data Types

Logical Arrays

a = [1,2,3]; a = [true,false,false];
b = [1+2i, 3+4i, 5+46i]; b = [true,0,5];

c = [0,0,1i];

= You can create an array of values using square brackets “[]*, with
values separated by a comma (,) or a space ()

= You can create arrays of different types, e.g.:
—Numbers
— Complex numbers
— Logicals

bristol.ac.uk

Data Types
CharacterArrays ____|Stings

a = 'test’; a = "test";

b = [ltl,lel,lsl,lt_’]; b = [Iltll, Ilell) "S", Iltll];

a == b; % returns true a == b; % returns false

c = ['The Answer is ', num2str(42)]; c = ["Mon", "Tue", "Wed", "Thu", "Fri"];
d = 'The Answer is 42°;

= There are two ways to store text in MATLAB
— A Character Array — use single quotes *’
— A String — using double quotes

= They behave very differently!
— A character array is “an array of single characters” and acts as an array!
— A String acts as one object, so you can have an array of strings.

bristol.ac.uk

= [University of
U BRISTOL

Matrix Algebra

bristol.ac.uk

Vector and Matrix Definitions

= To define a row vector, we separate entities with spaces or commas

MATLAB

3 1 8 a=[318]
a = [3,1,8]

= To define a column vector, we separate entries by semicolons
(which means start a new row):

73

21 a = [7.3,‘2.1]

= A matrix is then several rows separated by semicolons:

7 1 8 MATLAB

a=1[718;205]

bristo| 40 Uk 2 0 5 a=1[7,1 8 280,5]

= Linearly spaced numbers
Array Constructors Y 5P

a = 0;
b =1;
- Array Of ZerOS N = 5—5 0 0.25 0.5 0.75
c¢ = linspace(a, b, N);
a = zeros(1,3); 0 0 0
“an array of N numbers, evenly spaced
= Array of ones between a and b”
a = ones(2); 1 1 = R ted t
b = ones(2,2); 11 epeatea patiern
. . m= 3; 1 2 3
= |dentity Matrix n=1;
1 0 0 x = [1,2,3]; T 2 3
a = eye(3); 0 1 0 c = repmat(x, m, n); 1 2 3
o 0 1 ‘repeat matrix x’, ‘m’times in a row-wise
direction and , ‘n’times in a column-wise
direction”

bristol.ac.uk

Array Concatenation

= \We can also concatenate (combine) matrices and vectors together.
— However, dimensions must agree.

1 2
a = [12]; 1 2 d = [a;b]; 4 5
1 2|7
b =1[45]; 4 5 e = [dc];
4 5|8
7
c =1[7;8]; f =[e e;ab a]; 1 2|71 2|7
8
4 5|8|4 5|8
. 1 2|4 5|1 2
bristol.ac.uk

Vector Construction (the ‘’ Operator)

= The colon operator can create ranges of values with fixed spacing

5;
valent to

d
%
a 2,3,4,5];

I o 1

1:
quil
[1,

= The default stepsize is 1. But you can also specify the stepsize by
using two colons

start = 1; X =5:-2:0;

s‘;cp - ;; % eqtf;vglir]w to Start at ‘a’, take steps of
Step = 2, X = s i

% equivalent to not between ‘a’and ‘c’

X = [1.’3J5.’7];

bristol.ac.uk

Array Indexing

= You can access elements of
an array using parentheses

3
7
5
6

a(1l) % returns 3
a(3) % returns 5

= The keyword ‘end’ can be
used to access the last item

5 6 7 8 9

a(3) % returns 7
a(end) % returns 9
a(end-1) % returns 8

bristol.ac.ux

= YOou can access elements of a
matrix using two parameters

row column

N Y

a(1,2) % returns 1
a(3,3) % returns 5

7 1 8
3 5 1
2 0 5

= You can alter elemental values
of a matrix in a similar way

9 5 1
3 6 9 |
a(1,1) = o;
a(2,2) = o
‘ 0 5 1

Array Indexing

= You can also access slices of
an array, by passing arrays into
the parameters

7 1 8 a(2,[1,2,3]) 3 5 1
3 5 1

7
2 0 5 a([1,3],1)

2

bristol.ac.uk

= When taking slices, the colon

operator and ‘end’ keyword
become very powerful!

3 1 4 8
3 4 9 1
2 0 0 5

= A lone colon

a([1,2,3],[1,2])
a(1:3,1:2)

a(l:end,1:end-2)

“.n

N W W
© A~ =

:” can also be

used to access an entire row or

column.

N WO W

© A =

o O M

a = O

a(2,:)

3 4 9 1

a(end,:)

2 0 0 5

Array Indexing

= Logical arrays can also be passed to arrays as an indexing
parameter

[56 7 8 9];
a>6; % b = [false false true true true]

5 6 7 8 9 |—mmm g

% the next three lines do the same thing
a(a>6) = nan;

a(b) = nan;

S5 6 nan nan nan | «—— ;([false, false, true, true, true]) = nan;

bristol.ac.uk

Matrix Manipulation

= MATLAB has a number of built-in functions to perform basic and
complicated matrix manipulation.

Matrix multiplication C=AB C=A*B;
Transpose C=AT C=A’;
Inverse c=4"1 C=inv(A);
Determinant C = det(4) C=det(A);
Pseudo-inverse c=A" C=pinv(A);

To do matrix multiplication, the number of columns of A must equal the number of rows of B.

bristol.ac.uk

Element-wise Matrix Manipulation

= We can also perform operations on elements of matrices (note, matrices must
be the same size in all dimensions for this to work).

= We can add (or subtract) together each element of two matrices:

@ o, [bo) [t by ot b

C=A+8; a3+b3 a4+b4

= We can also multiple (or divide) each element of two matrices using .* and ./:

@ ol B <[uh @

bristol.ac.uk Thisis called the Hadamard Product; it is not the same as matrix multiplication!

Some More Examples

-1 4 7 2 5 | ——» sum(a(a<=4)) ——»

bristol.ac.uk

Some More Examples

1414 4 7 2 5| —>» sum(a(ac=4)) —» sum([-1 4 2]) —» 5

7 6 8 5 9| —» a(2:end)-a(l:end-1) — »

bristol.ac.uk

Some More Examples

1414 4 7 2 5| —>» sum(a(ac=4)) —» sum([-1 4 2]) —» 5

7 6 8 5 9| ———» a(2:end)-a(l:end-1) — » |4 2 3 4

— % a(:,1)'*a(:,end-1) ——»

N W W
o A =
o = b
g = O

bristol.ac.uk

Some More Examples

1414 4 7 2 5| —>» sum(a(ac=4)) —» sum([-1 4 2]) —» 5

7 6 8 5 9| ———» a(2:end)-a(l:end-1) — » |4 2 3 4

— a(:,1)'*a(:,end-1) —>»| 3 3 2|l1|—> 15

N W W
o A =
o = b
g = O

bristol.ac.uk

= [University of
U BRISTOL

Core Coding Constructs

bristol.ac.uk

Control Flow - IF

= In MATLAB, we can use conditional statements (if, else if, else) to branch off during the
execution of our code.

= Unlike Python, the keyword ‘end’ is used to determine the end of the statement.

MATLAB MATLAB

if <expression> if aileronIN > 30.0
<statements> aileronOUT = 30.0;
elseif <expression> elseif aileronIN < -30.0
<statements> aileronOUT = -30.0;

else else
<statements> aileronOUT = aileronlIN;
end end

Indenting is only aesthetic (unlike Python, where it forms part of the syntax)

bristol.ac.uk

Control Flow - IF
= The full if-elseif-else statement can be simplified

down to if, if-else or if-elseif as appropriate. if Zi}iﬁgﬁéﬂﬁfié%;
= Common boolean operators are similar to those end
found in Python:
T epression | Tueit

ac<b a is strictly less than b
a>b a is strictly greater than b
ac<=b aislessthanorequaltob
a>=b a is greater than or equal to b
a==>b aisequaltob
a~=b aisnotequaltob
a&b both a and b are true

bristol.ac.uk al|b either a or b is true

Control Flow - Switch

= A similar flow can be achieved with a switch-case statement

= A switch-case block selects and executes code based on the value of a
variable, running the “code block” for the first matching case.

MATLAB MATLAB

mode = 1; Day = "mon";
switch a switch Day
case 1 case {"Mon", "Tue", "Wed", "Thu"}
disp('Enabled") disp("Weekday")
case © case "Friday"
disp('Disabled') disp("End of the work week")
case 2 case {"Sat", "sun"}
disp('Paused') disp("Weekend")
otherwise otherwise I
diSp("Unknown Mode') disp("Unknown Day") Wh_at W_'” this
end end script display?

bristo| .ac.u k The function ‘disp’ prints to the command line.

Control Flow - FOR

= A for loop repeats a block of code a specific number of times. It's
used when you know how many times you want to loop.

MATLAB MATLAB MATLAB

for <variable> = <array> A = zeros(1,5); A = zeros(4,3);
<code> for 1 =1[1,3,5] for i = 1:size(A,1)
S A(1) = i"2; for j = 1:size(A,2)
end A(i,3) = i*5;
“Assign each value fromthe for i = 1:length(A) endend
array to the variable and A(1) = A(1) + 172;
execute the code block” end

) ‘length(A) returns the length of the longest dimension in A
bristol.ac.uk ‘size(A,n) returns the size of the N'th dimension of A (rows=dim 1,columns=dim 2)

Control Flow - FOR

= Two special keywords can alter the flow of for loops:
—“continue”: stop execution of code block and go to next iteration

— “break”: exit the loop

MATLAB

for 1 = 1:10
if i==4 | i==1
continue; % skip rest of code block
elseif i==7
break; % exit for loop
end
disp(i)
end

bristol.ac.uk

Control Flow - FOR

= Two special keywords can alter the flow of for loops:
—“continue”: stop execution of code block and go to next iteration

— “break”: exit the loop

MATLAB

for i = 1:10
if i==4 | i==1
continue; % skip rest of code block
elseif i==7 —
break; % exit for loop
end
disp(i)
end

o O1WN

bristol.ac.uk

Control Flow - WHILE

= A while loop keeps running as long as a condition is true. It's used when you
don’t know in advance how many times you’ll need to loop.

= ‘continue’ and ‘break’ can also be used in a while loop

i=1;
res = [];
while i < 60
=R
if mod(i,2) == @ % skip even numbers
continue;
end

res(end+1) = 1 Note

gr}d . ‘mod(x,n)’ computes the modulus,
isp(res); which is the remainder when x is

bristol.ac.uk elietze oy

—

Control Flow - WHILE

= A while loop keeps running as long as a condition is true. It's used when you
don’t know in advance how many times you’ll need to loop.

= ‘continue’ and ‘break’ can also be used in a while loop

MATLAB
i=1;

res = [];
while i < 60

i = i*3; —) 3 9 27 81
if mod(i,2) == @ % skip even numbers

continue;

end
res(end+l) = i; Note

‘mod(x,n)” computes the modulus,
which is the remainder when x is

bristol.ac.uk elietze oy

end
disp(res);

= [University of
U BRISTOL

Plotting - Quick Intro

bristol.ac.uk

Plotting A Single Line

= MATLAB has a powerful built-in
plotting facility.
— ‘help’ and ‘doc’ commands are

helpful here. The array of options &
parameters available is vast!

= \WWe’ll quickly cover the basics in
these slides.

= MATLAB allows for 2D plots of one
vector against another

— ‘figure’ command creates a new
figure window

bristol.ac.uk

MATLAB

figure;

t =0:0.1:1;
y = t.”72;
plot(t,y);

1

0.8 ¢

0.6

0.4}

0.2}

0

0 0.2 0.4 0.6 0.8 1

The vectors must have the same length!

Plotting Multiple Lines

= By default, multiple calls to ‘plot’
will overwrite the previous line

» Use the command ‘hold on’ to
allow multiple lines on the same
graph

The syntax ‘hold on’ may seem strange. This is a piece
of syntactic sugar. A space passes the next word as a
character array to the function. e.g.

hold on;
hold('on’);

Are equivalent

MATLAB

figure;

hold on;

t =0:0.1:1;
y = t."2;
plot(t,y);

y2 = sin(2*pi*t);
plot(t,y2);

0.5

-0.5+

MATLAB

y = t.”2;

PIOtting Multiple Lines Qéizg,){iniov_w;ia circle markers

= We can also change various aspects of ﬁoi(ilggz*ﬁl*ti
the plot area and the line styles. Ured dashed line
= To change the line style, add a string of B)
characters to the plot command S8, e s
— See ‘doc plot for full details %blue dotted line with x markers
= Other common commands: 3

2.5} X7

axis([XMIN XMAX YMIN YMAX]) Scale axes

title(text') Add the title ‘text’ to the graph =
xlabel('text") Add the label ‘text’ to the x axis a
legend (" linel', line2") Add a legend for each of the lines of

grid Toggle grid lines on and o 0

close all Close all opened figure windows 05

clf CIf plots on current figure

= [University of
U BRISTOL

SUMMARY

bristol.ac.uk

Summary

= Have introduced MATLAB syntax
= Have re-introduced coding constructs
= Have covered the basics of plotting

[=]

https://i2sc.fintanhealy.co.uk/

This Week

« Attempt as many of the worksheets as possible
« Second (and final) Lab next Tuesday

» Note — more tasks than you can complete in four hours - provided for practice

bristol.ac.uk

https://i2sc.fintanhealy.co.uk/

	Slide 1: Introduction To Scientific Computing
	Slide 2: Lecture 2
	Slide 3: Lecture Aims
	Slide 4: MATLAB
	Slide 5: Basic Types
	Slide 6: Data Types
	Slide 7: Data Types
	Slide 8: Data Types
	Slide 9: Matrix Algebra
	Slide 10: Vector and Matrix Definitions
	Slide 11: Array Constructors
	Slide 12: Array Concatenation
	Slide 13: Vector Construction (the ‘:’ Operator)
	Slide 14: Array Indexing
	Slide 15: Array Indexing
	Slide 16: Array Indexing
	Slide 17: Matrix Manipulation
	Slide 18: Element-wise Matrix Manipulation
	Slide 19: Some More Examples
	Slide 20: Some More Examples
	Slide 21: Some More Examples
	Slide 22: Some More Examples
	Slide 23: Core Coding Constructs
	Slide 24: Control Flow - IF
	Slide 25: Control Flow - IF
	Slide 26: Control Flow – Switch
	Slide 27: Control Flow - FOR
	Slide 28: Control Flow - FOR
	Slide 29: Control Flow - FOR
	Slide 30: Control Flow - WHILE
	Slide 31: Control Flow - WHILE
	Slide 32: Plotting – Quick Intro
	Slide 33: Plotting A Single Line
	Slide 34: Plotting Multiple Lines
	Slide 35: Plotting Multiple Lines
	Slide 36: Summary
	Slide 37: Summary

