
Introduction To
Scientific Computing

Basics of MATLAB

Dr. Fintan Healy

Room 1.31, Queens Building

fintan.healy@bristol.ac.uk

Lecture 1

Introduction

Unit Aims

To familiarise you with programming in MATLAB

(Re-)Introduce you to core programming constructs

Exposure to LaTeX for documentation and reporting

Landscape of Scientific
Computing

What is a Computer?

▪ A computer consists of hardware,
software and an operating system.
The `machine’

▪ An Operating System (OS) is the
mechanism to access the computer's
hardware - this is the `environment’

▪ A programming language is the
language used to define a set of
commands/tasks the programmer
wishes the computer to perform

Levels of Abstraction
▪ Instructions are passed to

the CPU/GPU as machine
code

▪ There are different levels
of abstraction, each with
different coding
languages

– Low Level
➢ minimal abstraction
➢ direct hardware control
➢ memory management
➢ rapid execution

– High Level
➢ lots of abstraction (focus

on logic and functionality)
➢ minimal memory

management
➢ slower execution

High-Level

Mid-Level

Low-Level

Assembly Code

Machine Code

Hardware

1

2

3

4

5

6

Core Coding Constructs
▪ Different languages, different syntax. Same constructs.

Python

val = 0
for i in range(1, 5):
 val = val + i
print(val)

MATLAB

val = 0;
for i = 1:4
 val = val + i;

end
disp(val);

C++

int val = 0;
for (int i = 1; i <= 4; i++) {

val = val + i;
}
cout << val << endl;

Key Constructs:

• Variables

• Control Flow (loops, conditions)

• Functions

• Operators (+ - / * etc…)

Core Coding Constructs
▪ Different languages, different syntax. Same constructs.

Assembly Code

section .data

 fmt db "%d", 10, 0

section .text

 global main

 extern printf

main:

 mov eax, 1

.loop:

 cmp eax, 4

 jg .end

 add eax, 1

 jmp .loop

.end:

 mov esi, eax

 lea rdi, [rel fmt]

 xor eax, eax

 call printf

 ret

Key Constructs:

• Variables

• Control Flow (loops, conditions)

• Functions

• Operators (+ - / * etc…)

Machine Code

B8 01 00 00 00

83 F8 04

7F 06

83 C0 01

EB F5

89 C6

48 BF 00 10 40 00 00 00 00 00

31 C0

E8 00 00 00 00

C3

Python

val = 0
for i in range(1, 5):
 val = val + i
print(val)

MATLAB

val = 0;
for i = 1:4
 val = val + i;

end
disp(val);

C++

int val = 0;
for (int i = 1; i <= 4; i++) {

val = val + i;
}
cout << val << endl;

Compiled Versus Interpreted

Python

i = 0

for i in range(1, 5):

 i = i + 1

print(i)

C++

int i = 0;
for (i = 1; i <= 4; i++) {

i = i + 1;
}
cout << i << endl;

▪ There are two* ways to get a
computer to perform an
‘operation’, either:

▪ Compiled
1. Source code developed
2. Compiler converts to machine

code
3. The binary code is run on the

OS

▪ Interpreted
1. Source code developed
2. Code executed in interpreter

environment
3. Interpreter reads and compiles

the code ‘line-by-line’
*JIT – Hybrid method…

Machine Code

B8 01 00 00 00

83 F8 04

7F 06

83 C0 01

EB F5

89 C6

48 BF 00 10 40 00

31 C0

E8 00 00 00 00

C3

MATLAB

i = 0;

for i = 1:4

 i = i+1;

end

disp(i);

Most Popular Programming Langauges

▪ Python is the most ‘popular’ language.
– Having it on your CV is excellent
– It’s a “general-purpose” language and is

widely used in web development and data
science

▪ C++ performs well. It’s used in
performance-critical applications

– Operating systems
– Game engines
– Databases
– Python & MATLAB packages….

▪ MATLAB is 43rd. Why are we learning
this?

Most Popular Programming Langauges

▪ It’s good to learn multiple languages!

▪ Statistics skewed by general
programming

▪ But we’re engineers, we don’t care
about*:

– Web development

– Front-end development (GUIs)

– App development

– Async software architecture

Scientific Programming

▪ A general-purpose language for scientific
programming requires:

Scientific Programming

▪ A general-purpose language for scientific
programming requires:

– Numerical Computing
➢ Matrix operations, linear algebra, signal

processing
➢ Simulation (numerical integration schemes)

– Data analysis + plotting
– Interfacing with hardware

➢ For experiments

– A simple user interface
➢ Sometimes you just need a “fancy” calculator.

– Fast development / fast execution
➢ Good documentation
➢ Industry adoption

Scientific Programming

▪ A general-purpose language for scientific
programming requires:

– Numerical Computing
➢ Matrix operations, linear algebra, signal

processing
➢ Simulation (numerical integration schemes)

– Data analysis + plotting
– Interfacing with hardware

➢ For experiments

– A simple user interface
➢ Sometimes you just need a “fancy” calculator.

– Fast development / fast execution
➢ Good documentation
➢ Industry Adoption

MATLAB
▪ MATLAB (Matrix Laboratory) is a

development package produced by
Mathworks specifically for numerical,
scientific and engineering
calculations.

▪ MATLAB is an interpreted language with
similar syntax to C

▪ It comes packaged with a mature IDE
(interactive development environment)

▪ It is an effective tool for initial
development, data analysis, and plotting

▪ It has broad industry adoption:
– Automotive, Aviation, F1 …
– Particularly for controller development and

data analysis

▪ Perhaps the best documentation of any
language

MATLAB
▪ A working knowledge of MATLAB is key

for many of your units:

▪ Year 2:
– Aerodynamic: lab exercise
– Dynamics/Control: coursework
– AVDASI2: useful for repeated calcs

▪ Year 3:
– RP3: many computational projects
– Numerical aero: all examples in MATLAB
– Control: Simulink

▪ Year 4:
– AVDASI4: detailed design calcs
– Many optional units either have c/w that

needs Matlab, or Matlab is a useful tool

▪ MATLAB (Matrix Laboratory) is a
development package produced by
Mathworks specifically for numerical,
scientific and engineering
calculations.

▪ MATLAB is an interpreted language with
similar syntax to C

▪ It comes packaged with a mature IDE
(interactive development environment)

▪ It is an effective tool for initial
development, data analysis, and plotting

▪ It has broad industry adoption:
– Automotive, Aviation, F1 …
– Particularly for controller development and

data analysis

▪ Perhaps the best documentation of any
language

MATLAB Basics

Installing MATLAB

▪ Follow the instructions at the following link to install MATLAB on
your personal machines
https://uob.sharepoint.com/sites/itservices/SitePages/matlab.aspx

– As part of the process you will need to create a MathWorks account.

▪ The full installation, including all the packages, is available on all
Engineering PCs

Note:

Minimum required Packages MATLAB + Simulink (if you are short of disk

space, there is no need to install all of the extra packages)

https://uob.sharepoint.com/sites/itservices/SitePages/matlab.aspx

The Interactive Development Enviroment (IDE)

Command Window – type

commands to get output

Files in the

current folder

Workspace

Variables

MATLAB Commands

▪ = is an assignment
– a = b; “assign “b” to “a”

▪ Semi-colon (;) used to suppress output

▪ MATLAB is case-sensitive

▪ Variable types are dynamic

MATLAB

>> x = "A String";
>> x = 3.2;
>> y = x * (sqrt(x) - 2)
y = -0.6757

▪ Commands can either be typed directly into the command window or written
into a script.

▪ Anything written by the user in the command window has the command prompt
symbol in front of it:

MATLAB Scripts

▪ A script in MATLAB is simply a text file that contains some MATLAB
commands.

▪ The extension of any MATLAB script is .m (e.g. filename.m).

Script “example.m”

clear all

close all

% This is a comment

a=2;

% pi is a built-in number

b=tan(pi);

% output something by not having a semi-colon

c=a*b

%% This is a new section

c=sin(2*pi);

d=cos(2*pi);

disp([c,d])

▪ “clear all” clears the workspace

▪ “close all” closes any open figures

▪ Comments begin with “%”

▪ To run, either:
– Press run in the editor

– Type script name into the command window
➢ e.g. “>> example”

– Press “ctrl+enter” to run a section

– Highlight code and press F9

MATLAB Documentation

▪ A powerful command in MATLAB is the “help” command.

▪ Returns the internal MATLAB documentation in the command
window, e.g.

▪ For even more detail use the doc command in the command
window:

>> help <somefunction>

>> help plot
plot - 2-D line plot
 This MATLAB function creates a 2-D line plot of the data in
 Y versus the corresponding values in X.

>> doc <somefunction>

MATLAB versus Python

▪ In MATLAB:
– All functions pre-loaded,

no imports!

– Whitespace is not
mission critical

– MATLAB uses 1-based
indexing

▪ In Python:
– Open-source

– Huge ecosystem

– Easy integration with
other languages

– “Go-to” language for
deep learning

Python

import numpy as np

A = np.array([[2, 3], [1, 7]])

b = np.array([[4], [4]])

x = A @ b

print(x)

MATLAB

A = [2,3;1,7];

b = [4;4];

x = A*b;

disp(x)

Python

import numpy as np

from scipy.integrate import solve_ivp

import matplotlib.pyplot as plt

def pendulum(t, y):

 g = 9.81

 L = 1

 return [y[1], -g/L * np.sin(y[0])]

sol = solve_ivp(pendulum, (0, 10), [0, 0.1])

plt.figure()

plt.plot(sol.t, sol.y[0])

plt.xlabel('Time (s)')

plt.ylabel('Angle (rad)')

plt.show()

MATLAB

function out =pendulum(t,y)

g = 9.81;

L = 1;

out = [y(2);g*sin(y(1))/L];

end

[t,y] = ode45(@pendulum,[0 10], [0; 0.1]);

figure;

plot(t, y);

xlabel('Time (s)');

ylabel('Angle (rad)');

Course Schedule

Course Structure

Week Lecture Lab

1 Introduction (a-sync) Workbook 1

2 Basic Syntax (Lab Session)

Workbooks 2-43 Plotting, Functions,

Tips & Tricks
(Lab Session)

4 Latex (a-sync)

▪ Supervised labs in weeks 2 & 3
– No new content in labs, I and other teaching staff will be there to support

you in completing the workbooks

Summary

▪ Have introduced MATLAB

▪ Information can also be found on Blackboard:
– Organisations -> CADE Student Handbook 2025-26 -> About Your Programme -> Aerospace

Engineering Undergraduate -> Year 2

This Week

• Complete “Getting Started” Worksheet

• Attempt Worksheet 1

https://i2sc.fintanhealy.co.uk/

https://i2sc.fintanhealy.co.uk/

ENJOY!

	Slide 1: Introduction To Scientific Computing
	Slide 2: Lecture 1
	Slide 3: Unit Aims
	Slide 4: Landscape of Scientific Computing
	Slide 5: What is a Computer?
	Slide 6: Levels of Abstraction
	Slide 7: Core Coding Constructs
	Slide 8: Core Coding Constructs
	Slide 9: Compiled Versus Interpreted
	Slide 10: Most Popular Programming Langauges
	Slide 11: Most Popular Programming Langauges
	Slide 12: Scientific Programming
	Slide 13: Scientific Programming
	Slide 14: Scientific Programming
	Slide 15: MATLAB
	Slide 16: MATLAB
	Slide 17: MATLAB Basics
	Slide 18: Installing MATLAB
	Slide 19: The Interactive Development Enviroment (IDE)
	Slide 20: MATLAB Commands
	Slide 21: MATLAB Scripts
	Slide 22: MATLAB Documentation
	Slide 23: MATLAB versus Python
	Slide 24: Course Schedule
	Slide 25: Course Structure
	Slide 26: Summary
	Slide 27: ENJOY!

